
Visual Basic Add-on DLL Version 1.02
This Dynamic Link Library (DLL) provides the following additional functions for Visual
Basic

Huge Array Support - Support for arrays which exceed Visual Basic's limitations
Disk Information Support - Access to disk/diskette information not available through
Visual Basic

THE INFORMATION PROVIDED IN THIS SOFTWARE AND ANY DOCUMENTATION MAY
ACCOMPANY THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.THE
USER ASSUMES THE ENTIRE RISK AS TO THE ACCURACY AND THE USE OF THIS
SOFTWARE.

This software may be copied and distributed subject to the following conditions:
 1) All documentation must be copied without modification and all pages must be
included;
 2) All files on the disk(s) must be copied without modification;
 3) All components must be distributed together; and
 4) This software may not be distributed for profit.

Copyright 1991 by:
Michael A. Stewart

 539 Dutch Neck Road
East Windsor, NJ    08520

Visual Basic is a trademark of Microsoft Corporation

If you have any questions about its functions or suggestions for its future enhancement
the author can be contacted through the following services:

Compuserve ID: 76234,3314
 Prodigy ID: HWKS33A
 AOL ID: Michae1334
 ILINK Windows, Basic, and Win.App.Dev Conferences.

Huge Array Support
The huge array functions provide the ability to utilize arrays which exceed    the Visual
Basic limitations of 32,767 elements and/or 65,536 bytes total size, and to redimension
arrays without erasing their contents.

To use the huge array functions, copy the appropriate declarations contained in the
VBADDONS.TXT    file to the global module of your program, and ensure that the
VBADDONS.DLL is in the normal Windows program search path.

Declare Statements - Declarations required to use the functions in Visual Basic.
Error Codes - Descriptions of possible huge array error codes.
Functions - Descriptions of the various huge array functions provided by the DLL.

Examples for the use of all huge array functions may be found in the HUGESUPP.BAS file.

Huge Arrays - Declare Statements
To use the huge array functions the following declare statements must be placed in the
global module of your Visual Basic program:

Declare Function HugeCurrency Lib "vbaddons.dll"
 (ByVal hArray%, ByVal el&) As Currency
Declare Function HugeDim Lib "vbaddons.dll"
 (ByVal recsize%, ByVal limit&) As Integer
Declare Function HugeDouble Lib "vbaddons.dll"
 (ByVal hArray%, ByVal el&) As Double
Declare Function HugeErase Lib "vbaddons.dll"
 (ByVal hArray%) As Integer
Declare Function HugeGetElement Lib "vbaddons.dll"
 (ByVal Index%, ByVal element&, buffer As Any) As Integer
Declare Function HugeInt Lib "vbaddons.dll"
 (ByVal hArray%, ByVal el&) As Integer
Declare Function HugeLong Lib "vbaddons.dll"
 (ByVal hArray%, ByVal el&) As Long
Declare Function HugeNumArrays Lib "vbaddons.dll"
 () As Integer
Declare Function HugeRedim Lib "vbaddons.dll"
 (ByVal hArray%, ByVal limit&) As Integer
Declare Function HugeSetElement Lib "vbaddons.dll"
 (ByVal Index%, ByVal element&, buffer As Any) As Integer
Declare Function HugeSingle Lib "vbaddons.dll"
 (ByVal hArray%, ByVal el&) As Single
Declare Function HugeUbound Lib "vbaddons.dll"
 (ByVal hArray%) As Integer

These declare statements are provided in the VBADDONS.TXT    file.

Huge Array Error Codes
The following error codes may be returned by the various Huge Array functions:
Error Code Description
0 No error has occurred
-1 Insufficient memory available to create the array.
-2 The number of available huge arrays has been exhausted.
-3 The requested element size is invalid. (see HugeDim for details)
-4 Invalid element number (must be in the range of 0 to the upper

boundary).
-5 Invalid array handle

Huge Array Functions
The following functions are provided:

HugeCurrency - Retrieve Currency value from a Huge Array
HugeDim - Dimension a Huge Array
HugeDouble - Retrieve Double value from a Huge Array
HugeErase - Erase a Huge Array
HugeGetElement - Retrieve an element from a Huge Array
HugeInt - Retrieve Integer value from a Huge Array
HugeLong - Retrieve Long value from a Huge Array
HugeNumArrays - Retrieve the number of available Huge Arrays
HugeRedim - Redeminsion a Huge Array
HugeSetElement - Store an element in a Huge Array
HugeSingle - Retrieve Single value from a Huge Array
HugeUbound - Retrieve Upper Boundary of a Huge Array
Huge Array Error Codes - Error return codes for huge arrays

HugeCurrency
Action:

Retrieves a currency value from a huge array.
Syntax:

HugeCurrency(hArray As Integer, ElementNumber As Long) As Currency
Remarks:

The HugeCurrency statement uses the following arguments:

Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Notes:

This function does not return an error code or perform any data type checking, therefore
it should only be used when you are absolutely sure that the values of hArray and
ElementNumber are valid and that the array contains currency values.

HugeDim Statement
Action:

Dimensions a huge array and returns a handle to that array.
Syntax:

HugeDim(ElementSize As Integer, UpperBound As Long) As Integer
Remarks:

The HugeDim statement uses the following arguments:

Argument Description
ElementSize The size of each element in the array (2 for Integer, 4 for single, etc).

The Len() function may be used to determine this value.
UpperBound The upper boundary of the array. The lower boundary of all huge arrays

is 0.

The HugeDim statement returns the following values:

Returns Description
Integer If no error has occurred, the array handle for use by other Huge

function is returned. If an error has occurred, a negative value
representing the error code is returned.

Notes:
The Windows API - GlobalAlloc function is utilized and the total size of any array is limited
to 1MB in Standard Mode and 64MB in Enhanced Mode.
You cannot create a huge array of variable length strings, or of a user defined type which
contains variable length strings. Only fixed length strings may be used in huge arrays.
If the total size (in bytes) of an array is going to be greater than 64K the size of each
element has to be an integer power of 2 (1, 2, 4, 8, and so forth).

HugeDouble
Action:

Retrieves a double precision value from a huge array.
Syntax:

HugeDouble(hArray As Integer, ElementNumber As Long) As Double
Remarks:

The HugeDouble statement uses the following arguments:

Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Notes:

This function does not return an error code or perform any data type checking, therefore
it should only be used when you are absolutely sure that the values of hArray and
ElementNumber are valid and that the array contains double precision values.

HugeErase
Action:

Erases a previously dimensioned huge array.
Syntax:

HugeErase(hArray As Integer) As Integer
Remarks:

The HugeErase statement uses the following arguments:

Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.

The HugeErase statement returns the following values:
Returns Description
Integer If the hArray is valid a 0 is returned. If hArray is not valid, a negative

value representing the error code is returned.
Notes:

HugeErase must be used for all array created by HugeDim or HugeRedim. Failure to do
so will cause the number of available huge arrays to become exhausted.

HugeGetElement
Action: Retrieves an element from a huge array.

Syntax:
HugeGetElement(hArray As Integer, ElementNumber As Long, Buffer as Any)    As
Integer

Remarks:
The HugeGetElement statement uses the following arguments:
Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Buffer The variable to receive the contents of the huge array element.

The HugeGetElement statement returns the following values:
Returns Description
Integer If the Variable has been retrieved from the array a 0 is returned. If an

error has occurred, a negative value representing the error code is
returned.

Notes:
This function does perform any data type checking, therefore the length of Variable must
exactly match the ElementSize specified in the HugeDim statement for the array.

HugeInt
Action:

Retrieves an integer value from a huge array.
Syntax:

HugeInt(hArray As Integer, ElementNumber As Long) As Integer
Remarks:

The HugeInt statement uses the following arguments:

Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Notes:

This function does not return an error code or perform any data type checking, therefore
it should only be used when you are absolutely sure that the values of hArray and
ElementNumber are valid and that the array contains integer values.

HugeLong
Action:

Retrieves a long value from a huge array.
Syntax:

HugeLong(hArray As Integer, ElementNumber As Long) As Long
Remarks:

The HugeLong statement uses the following arguments:
Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Notes:

This function does not return an error code or perform any data type checking, therefore
it should only be used when you are absolutely sure that the values of hArray and
ElementNumber are valid and that the array contains long values.

HugeNumArrays
Action:

Returns the number of available huge arrays.
Syntax:

HugeNumArrays As Integer
Remarks:

The HugeNumArrays statement returns the following values:
Returns Description
Integer The number of huge arrays currently available.

HugeRedim
Action:

Redimensions a previously dimensioned huge array.
Syntax:

HugeRedim(hArray As Integer, UpperBound As Long) As Integer
Remarks:

The HugeRedim statement uses the following arguments:

Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
UpperBound The new upper boundary of the array. The lower boundary of all huge

arrays is 0.

The HugeErase statement returns the following values:
Returns Description
Integer If the array has been redimensioned a 0 is returned. If the array was

not redimensioned, a negative value representing the error code is
returned.

Notes:
Unlike Visual Basic's ReDim, HugeRedim preserves the previous contents of the array.
HugeErase followed by HugeDim should be used to erase the contents of the array.

HugeSetElement
Action:

Stores an element in a huge array.
Syntax:

HugeSetElement(hArray As Integer, ElementNumber As Long, Buffer as Any) As
Integer

Remarks:
The HugeSetElement statement uses the following arguments:
Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Buffer    The variable containing the data to be stored in the huge array

element.

The HugeSetElement statement returns the following values:
Returns Description
Integer If the Variable has been stored in the array a 0 is returned. If an error

has occurred, a negative value representing the error code is returned.
Notes:

This function does perform any data type checking, therefore the length of Variable must
exactly match the ElementSize specified in the HugeDim statement for the array.

HugeSingle
Action:

Retrieves a single precision value from a huge array.
Syntax:

HugeSingle(hArray As Integer, ElementNumber As Long) As Single
Remarks:

The HugeSingle statement uses the following arguments:

Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
ElementNumber The number of the element within the huge array. This number must be

in the range of 0 to the upper boundary of the huge array.
Notes:

This function does not return an error code or perform any data type checking, therefore
it should only be used when you are absolutely sure that the values of hArray and
ElementNumber are valid and that the array contains single precision values.

HugeUbound
Action:

Returns the upper boundary of a previously dimensioned huge array.
Syntax:

HugeUbound(hArray As Integer) As Integer
Remarks:

The HugeUbound statement uses the following arguments:
Argument Description
hArray The array handle as returned by HugeDim or HugeRedim.
The HugeErase statement returns the following values:
Returns Description
Integer If the hArray is valid the upper boundary of the huge array is returned.

If hArray is not valid, a negative value representing the error code is
returned.

Disk Information Support
The Disk Information Support provides functions to access and alter disk information.

To use the Disk Information Functions, copy the appropriate declarations contained in the
VBADDONS.TXT file to the global module of your program, and ensure that the
VBADDONS.DLL is in the normal Windows program search path.

Data Type Statements - Data Types required to use the functions in Visual Basic.
Declare Statements - Declarations required to use the functions in Visual Basic.
Functions - Descriptions of the Disk Information functions provided by the DLL

Examples for the use of the disk support functions may be found in the DISKSUPP.BAS
file.

Disk Information - Data Types
The following data types must be placed in the global module of the program:

Type FindDataType
 reserved As String * 21
 FileAttr As String * 1
 FileTime As Integer
 FileDate As Integer
 FileSize As Long
 Filename As String * 13
End Type

FileTime is returned    as:

Bits Contents
0-4 Number of 2-second increments (0-29)
5-10 Minutes (0-59)
11-15 Hours(0-23)
File Date is returned as:

Bits Contents
0-4 Day of month (1-31)
5-8 Month (1-12)
9-15 Year (relative to 1980)

These statements may be found in the VBADDONS.TXT file.

The following constants should be placed in the global module of the
program:

'
' Bitmasks for FileAttr field of FindDataType
'
Global Const FILE_NORMAL = 0 ' Normal files
Global Const FILE_RDONLY = 1 ' Read only file
Global Const FILE_HIDDEN = 2 ' Hidden file
Global Const FILE_SYSTEM = 4 ' System file
Global Const FILE_VOLID = 8 ' Volume ID file
Global Const FILE_SUBDIR = 16 ' Subdirectory
Global Const FILE_ARCH = 32 ' Archive flag

These statements may be found in the VBADDONS.DSK file.

Disk Information - Declare Statements

To use the Disk Information functions the following declare statements must be placed in
the global module of your Visual Basic program:

Declare Function DiskGetFreeSpace Lib "vbaddons.dll"
(ByVal DriveLetter As String) As Long
Declare Function DiskGetFirstFile Lib "vbaddons.dll"
(ByVal StartString As String, ByVal AttrFlags As Integer,
FindData As FindDataType) As Integer
Declare Function DiskGetNextFile Lib "vbaddons.dll"
(FindData As FindDataType) As Integer
Declare Function DiskSetLabel Lib "vbaddons.dll"
(ByVal DriveLetter As String, ByVal NewLabel As String)
As Integer

These statements are provided in the VBADDONS.TXT file.

Disk Support Functions
The following functions are provided:

DiskGetFreeSpace - Returns the amount of free space on a disk
DiskGetFirstFileDisk and DiskGetNextFile - Return file information from a directory
DiskSetLabel - Sets the disk label

DiskGetFreeSpace Statement
Action:

Returns the amount of free space on a disk.
Syntax:

DiskGetFreeSpace(ByVal DriveLetter As String) As Long
Remarks:

The DiskGetFreeSpace statement uses the following arguments:
Argument Description
DriveLetter A string whose first character contains the desired drive "A", "B", etc.
The DiskGetFreeSpace statement returns the following values:
Returns Description
Long If no error has occurred, the amount of free space on the disk. If an

error has occurred -1 is returned.

DiskGetFirstFile Statement
DiskGetNextFile Statement
Action:

Uses in combination with each other to read the contents of a disk directory.
Syntax:

DiskGetFirstFile(ByVal StartString As String, ByVal AttrFlags As Integer,
FindData As FindDataType) As Integer

DiskGetNextFile(FindData As FindDataType) As Integer
Remarks:

The DiskGetFirstFile and DiskGetNextFile statements use the following arguments:

Argument Description
StartString A string which contains a drive:pathname.filename.ext string to begin

the search. The drive letter is optional if the current drive is to be used.
The pathname is optional if the current path is to be used. Standard
DOS wildcards may be used in the filename and ext sections of the
string.
Examples:
"b:*.*"
"c:\windows*.ini"

 AttrFlags An integer value which specifies which file types are to be included in
the search as follows:
 0 Normal files - No read/write restrictions
 1 Read only files and normal files
 2 Hidden files and normal files
 4 System files and normal files
 8 Volume ID only
16 Subdirectories and normal files
32 Archive files only

FindData    A user data type (FindDataType) which will receive the information for a
file which meets the search criteria. for DiskGetNextFile this must be
the same variable used for the GetFirstFile.

The DiskGetFirstFile    and DiskGetNextFile statements return following values:
Returns Description
Integer If a matching file was found a 1 is returned. If no matching file was

found a 0 is returned.
Notes:

Correct usage requires that a DiskGetFirstFile be utilized to begin the search and
DiskGetNextFile used until a return value of 0 is received.

DiskSetLabel Statement
Action:

Sets the disk label to a specified string value.
Syntax:

DiskSetLabel(ByVal DriveLetter As String, ByVal NewLabel As String) As Integer
Remarks:

The DiskSetLabel statement uses the following arguments:

Argument Description
DriveLetter A string whose first character contains the desired drive "A", "B", etc.
NewLabel    A string containing 1 to 11 characters which will be used as the new

disk label.

The DiskSetLabel statement returns the following values:
Returns Description
Integer If no error has occurred, a 0 is returned. If an error has occurred, a non-

zero is returned.

